

Liquid Hydrogen Storage at Kennedy Space Center

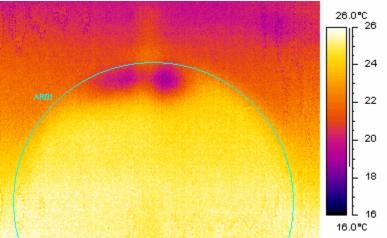
L. Gu, G. Bokerman, D. Block, A. Raissi, M. Basarkar

Florida Solar Energy Center An Institute of the University of Central Florida

Start Date = Oct. 2003 Planned Completion = Nov. 2005

Research Goals and Objectives

- Goals
 - Continue to evaluate possible solutions to reduce LH2 boiloff at the Pad B storage tank through detailed 3-D simulations
- Objectives
 - Evaluate other possible solutions
 - Provide comprehensive recommendations enabling KSC to decide what type of renovations should be carried out under guidance of KSC staff



Relevance to Current State-of-the-Art

 Simulate thermal performance of LH2 storage tanks at KSC using a detailed 3-D thermal model

Relevance to NASA

- Pad B LH2 storage tank has more than 450 gal/day loss than Pad A due to a void
- KSC needs recommendations for future tank renovation

Budget, Schedule and Deliverables

- Budget: \$130,000
- Schedule
 - Dec. 2004 Nov. 2005
- Deliverable
 - Submit a final report to KSC
 - Provide recommendations of possible solutions to reduce LH2 boiloff rate

Florida Universities Hydrogen Review 2005

Florida Solar Energy Center • November 1-4, 2005

Previous work

- Site visit
 - Took IR images
 - Measured surface temperatures and heat fluxes
- Develop a thermal model
 - 3-D
 - Validate the model against measured data
- Possible solutions
 - External insulation: Not a solution
- Examine thermal distribution near a support
- Insulation Experimental Program

Present Tasks

- Revisit tanks to map surface temp distribution and measure heat fluxes at the void surface
- Examine surface properties impact over the void
- Investigate internal vent pipe impact
- Study leaking valve and other lines
- Perform yield stress study of micro-spheres

Anticipated Technology End Use

- The 3-D detailed model may be used for other applications for NASA:
 - Help any future storage tank design, including compressed gaseous and liquid storage
 - Optimize tank structure for the best performance
 - Investigate moisture transfer of foam insulation in shuttle fuel tanks

Task 1: Revisit KSC

- Goal: Measure surface temperature distribution to determine the void size for further model validation
 - IR cameras
 - Heat flux transducers
 - Thermal couples
- Tried to contact KSC persons to schedule a visit several times
- Due to busy schedule of KSC personal work loads
- Continue to reschedule the revisit

Task 2 Examine impact of surface properties over a void

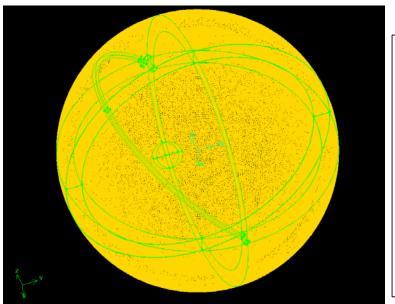
- Goal:
 - Investigate whether changing surface properties is a good solution or not
- Absorptivity
 - Little impact with perfect insulation (4.5% from 0 to 1)
 - 11% difference increase from 0 to 1.0 compared to perfect insulation with a small void (D=2m)
 - 23% difference increase from 0 to 1.0 compared to perfect insulation with a large void (D=4.5m)
 - Show benefits using a coat with less absorptivity

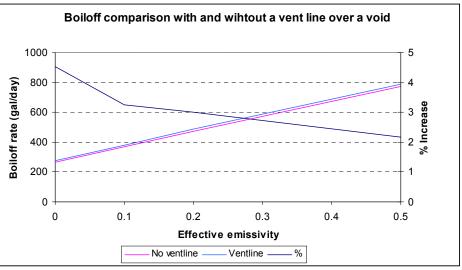
Florida Solar Energy Center • November 1-4, 2005

Task 2 Continue

- Emissivity
 - Less than 2% reduction from 0.45 to 0.9 with void
 - No real benefit using a coat with greater emissivity in Florida climate (Tsky=f(Tdew))
- Conclusion
 - May not be a good solution
 - Best approach is to fix the void (from 750 to 300 gal/day)

Task 3 Examine vent line impact


- Goal
 - study the impact of the vent line on boiloff rate
- Impact
 - Boiloff gaseous H2 at 20K reduces insulation temperature
 - Vent line pipe increases heat transfer from ambient to the tank through pipe steel walls



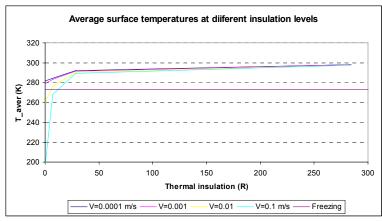
Florida Solar Energy Center • November 1-4, 2005

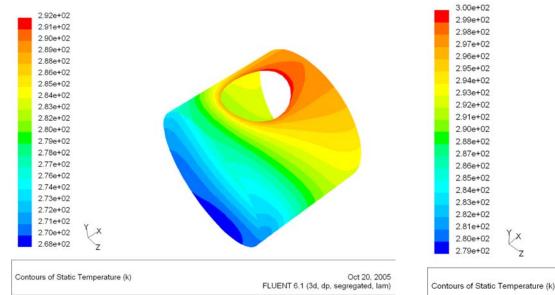
Task 3 Continues

- Heat transfer from pipe walls is larger than heat reduction from cold vent source
- Boiloff rate increases between 2-4.5%

Task 4 Examine leak valve

- Goal:
 - Determine the amount of heat losses caused by the leaky valve, and find possible solutions to reduce heat losses
- Approach
 - 3-D detailed model
 - Ensure surface temperature above 32°F
- Surface temperature is a function of flow rate and thermal resistance


Florida Universities Hydrogen Review 2005

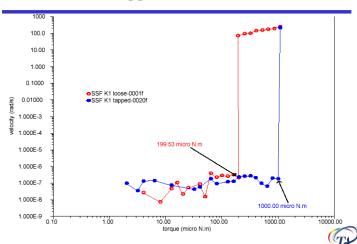

Florida Solar Energy Center • November 1-4, 2005

Reduce heat leak from a valve

Conclusion:

Rmin = 10 to maintain
Tsur > 32°F at larger
flow rate

Oct 20, 2005 FLUENT 6.1 (3d, dp, segregated, lam)


Task 5 Test properties of microspheres

- Glass Microsphere Crush Strength
 - Isostatic <10% Crush (Standard test)
 - Point to Point >50% Crush (direct contact)
- Behavior at cryogenic temperatures
 - Published data on glasses similar to microspheres
 - Reveal the tensile strength of glass at cryogenic temperatures improves 1.5 to 2.3 times, compared to room temperatures
 - Expect to have higher tensile strength in cryogenic conditions than room conditions

Task 5 Continues

- Glass Microsphere Yield Stress to Flow Test
 - Microsphere Behavior Compared in Loose and Compacted State
 - Yield Stress Increased by 5X to 10X
 - Rheometer data are only used on a relative basis and not for packing yield stress

K1: Loose vs. Tapped

Florida Solar Energy Center • November 1-4, 2005

Significant interactions

- KSC collaborators
 - Bob Youngquist
 - Mark Berg
 - Phil Metziger
- Meeting with KSC staff (Steve Sojorner & others)
 - Mechanical properties of microsphere under cryogenic conditions
 - NASA renovation plan

Future Plans

- Investigate moisture transfer of foam insulation at shuttle fuel tanks
 - Raised by Mark Sevier, Joe Lstiburek, and John Straube (Energy Design Update, Oct. 2005)
 - Possible cause of foam break
 - Ice forms in foam before launch
 - Pressure drop during launch makes ice evaporated rapidly
 - Boiloff force and vibration may cause foam lose
 - Perform heat and mass transfer simulation to ensure the boiloff force is not a cause of foam broken.